UGEB2530 Game and strategic thinking
 Solution to Assignment 4

1.) Explain whether the following bimatrix games can be transformed to a zero sum game.

Solution:

(a) If it can be transformed to a 0 sum game, then there are α and β such that: $\alpha \mathrm{A}+\beta \mathrm{I}=-\mathrm{B}$.
where: $\mathrm{A}=\left(\begin{array}{cc}3 & 1 \\ -2 & 0\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{cc}-8 & -2 \\ 7 & 1\end{array}\right)$
$\mathrm{I}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
This equation has solution that: $\alpha=3, \beta=-1$. So this game can be transformed to a zero sum game.
(b) If it can be transformed to a 0 sum game, then there are α and β such that: $\alpha \mathrm{A}+\beta \mathrm{I}=-\mathrm{B}$.
where: $\mathrm{A}=\left(\begin{array}{cc}2 & -2 \\ -4 & 3\end{array}\right)$
$\mathrm{B}=\left(\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right)$
$\mathrm{I}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
This equation has no solution, So this game cannot be transformed to a zero sum game.
2. Find all pure Nash equilibrium of the games with the following game bimatrices and state whether they are Pareto optimal.

Solution:

(a) The Nash equilibrium are $(4,6)$ and $(2,4)$, with $(4,6)$ is a Pareto optimal and $(2,4)$ is not a Pareto optimal.
(b) The Nash equilibrium are $(3,3)$ and $(4,2)$, with both $(3,3)$ and $(4,2)$ are not Pareto optimal.

3. Solution:

(a) The prudential strategy for player I is $\left(\frac{1}{5}, \frac{4}{5}\right)$ and the prudential strategy for player I is $\left(\frac{1}{2}, \frac{1}{2}\right)$. So the payoff of each player using the strategy are:

$$
\begin{aligned}
& v_{I}=\left[\begin{array}{ll}
0.2 & 0.8
\end{array}\right]\left[\begin{array}{ll}
1 & 5 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]=3.4 \\
& v_{I I}=\left[\begin{array}{ll}
0.2 & 0.8
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]=2.5
\end{aligned}
$$

(b) The Nash equilibrium for player I is $\left(\frac{1}{4}, \frac{3}{4}\right)$ and the prudential strategy for player I is $\left(\frac{2}{5}, \frac{3}{5}\right)$. So the payoff of each player using the strategy are:

$$
\begin{aligned}
& v_{I}=\left[\begin{array}{ll}
0.25 & 0.75
\end{array}\right]\left[\begin{array}{ll}
1 & 5 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
0.4 \\
0.6
\end{array}\right]=3.4 . \\
& v_{I I}=\left[\begin{array}{ll}
0.25 & 0.75
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
0.4 \\
0.6
\end{array}\right]=2.5 .
\end{aligned}
$$

4. Solution:

(a) The prudential strategy for player I is $(1,0)$ and the prudential strategy for player I is $\left(\frac{2}{5}, \frac{3}{5}\right)$. So the payoff of each player using the strategy are:

$$
\begin{aligned}
& v_{I}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
5 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0.4 \\
0.6
\end{array}\right]=3.2 \\
& v_{I} I=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-3 & 4 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
0.4 \\
0.6
\end{array}\right]=1.2
\end{aligned}
$$

(b) The Nash equilibrium for player I is $(1,0)$ and the prudential strategy for player I is $(0,1)$. So the payoff of each player using the strategy are:

$$
\begin{aligned}
& v_{I}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
5 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=2 \\
& v_{I} I=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
-3 & 4 \\
3 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=4
\end{aligned}
$$

